Four friends - Arjan, Bhuvan, Guran and Lakha were comparing the number of sheep that they owned. It was found that Guran had ten more sheep than Lakha. If Arjan gave one-third to Bhuvan, and Bhuvan gave a quarter of what he then held to Guran, who then passed on a fifth of his holding to Lakha, they would all have an equal number of sheep.How many sheep did each of them possess? Give the minimal possible answer.

Answer

Arjan, Bhuvan, Guran and Lakha had 90, 50, 55 and 45 sheep respectively.

Assume that Arjan, Bhuvan, Guran and Lakha had A, B, G and L sheep respectively. As it is given that at the end each would have an equal number of sheep, comparing the final numbers from the above table.

Arjan's sheep = Bhuvan's sheep

2A/3 = A/4 + 3B/4

8A = 3A + 9B

5A = 9B

Arjan's sheep = Guran's sheep

2A/3 = A/15 + B/5 + 4G/5

2A/3 = A/15 + A/9 + 4G/5 (as B=5A/9)

30A = 3A + 5A + 36G

22A = 36G

11A = 18G

Arjan's sheep = Lakha's sheep

2A/3 = A/60 + B/20 + G/5 + L

2A/3 = A/60 + A/36 + 11A/90 + L (as B=5A/9 and G=11A/18)

2A/3 = A/6 + L

A/2 = L

A = 2L

Also, it is given that Guran had ten more sheep than Lakha.

G = L + 10

11A/18 = A/2 + 10

A/9 = 10

A = 90 sheep

Thus, Arjan had 90 sheep, Bhuvan had 5A/9 i.e. 50 sheep, Guran had 11A/18 i.e. 55 sheep and Lakha had A/2 i.e. 45 sheep.

Subscribe to:
Post Comments (Atom)

## No comments:

Post a Comment