Showing posts with label san interview. Show all posts
Showing posts with label san interview. Show all posts

Define RAID? Which one you feel is good choice?

Define RAID? Which one you feel is good choice?

RAID (Redundant array of Independent Disks) is a technology to achieve redundancy with faster I/O. There are Many Levels of RAID to meet different needs of the customer which are: R0, R1, R3, R4, R5, R10, R6.

Generally customer chooses R5 to achieve better redundancy and speed and it is cost effective.
R0 – Striped set without parity/[Non-Redundant Array].
Provides improved performance and additional storage but no fault tolerance. Any disk failure destroys the array, which becomes more likely with more disks in the array. A single disk failure destroys the entire array because when data is written to a RAID 0 drive, the data is broken into fragments. The number of fragments is dictated by the number of disks in the drive. The fragments are written to their respective disks simultaneously on the same sector. This allows smaller sections of the entire chunk of data to be read off the drive in parallel, giving this type of arrangement huge bandwidth. RAID 0 does not implement error checking so any error is unrecoverable. More disks in the array means higher bandwidth, but greater risk of data loss
R1 - Mirrored set without parity.

Provides fault tolerance from disk errors and failure of all but one of the drives. Increased read performance occurs when using a multi-threaded operating system that supports split seeks, very small performance reduction when writing. Array continues to operate so long as at least one drive is functioning. Using RAID 1 with a separate controller for each disk is sometimes called duplexing.

R3 - Striped set with dedicated parity/Bit interleaved parity.

This mechanism provides an improved performance and fault tolerance similar to RAID 5, but with a dedicated parity disk rather than rotated parity stripes. The single parity disk is a bottle-neck for writing since every write requires updating the parity data. One minor benefit is the dedicated parity disk allows the parity drive to fail and operation will continue without parity or performance penalty.

R4 - Block level parity.

Identical to RAID 3, but does block-level striping instead of byte-level striping. In this setup, files can be distributed between multiple disks. Each disk operates independently which allows I/O requests to be performed in parallel, though data transfer speeds can suffer due to the type of parity. The error detection is achieved through dedicated parity and is stored in a separate, single disk unit.

R5 - Striped set with distributed parity.
Distributed parity requires all drives but one to be present to operate; drive failure requires replacement, but the array is not destroyed by a single drive failure. Upon drive failure, any subsequent reads can be calculated from the distributed parity such that the drive failure is masked from the end user. The array will have data loss in the event of a second drive failure and is vulnerable until the data that was on the failed drive is rebuilt onto a replacement drive.

R6 - Striped set with dual distributed Parity.

Provides fault tolerance from two drive failures; array continues to operate with up to two failed drives. This makes larger RAID groups more practical, especially for high availability systems. This becomes increasingly important because large-capacity drives lengthen the time needed to recover from the failure of a single drive. Single parity RAID levels are vulnerable to data loss until the failed drive is rebuilt: the larger the drive, the longer the rebuild will take. Dual parity gives time to rebuild the array without the data being at risk if one drive, but no more, fails before the rebuild is complete.

Define RAID? Which one you feel is good choice?

Define RAID? Which one you feel is good choice?
RAID (Redundant array of Independent Disks) is a technology to achieve redundancy with faster I/O. There are Many Levels of RAID to meet different needs of the customer which are: R0, R1, R3, R4, R5, R10, R6.
Generally customer chooses R5 to achieve better redundancy and speed and it is cost effective.


R0 – Striped set without parity/[Non-Redundant Array].
Provides improved performance and additional storage but no fault tolerance. Any disk failure destroys the array, which becomes more likely with more disks in the array. A single disk failure destroys the entire array because when data is written to a RAID 0 drive, the data is broken into fragments. The number of fragments is dictated by the number of disks in the drive. The fragments are written to their respective disks simultaneously on the same sector. This allows smaller sections of the entire chunk of data to be read off the drive in parallel, giving this type of arrangement huge bandwidth. RAID 0 does not implement error checking so any error is unrecoverable. More disks in the array means higher bandwidth, but greater risk of data loss
R1 - Mirrored set without parity.
Provides fault tolerance from disk errors and failure of all but one of the drives. Increased read performance occurs when using a multi-threaded operating system that supports split seeks, very small performance reduction when writing. Array continues to operate so long as at least one drive is functioning. Using RAID 1 with a separate controller for each disk is sometimes called duplexing.
R3 - Striped set with dedicated parity/Bit interleaved parity.
This mechanism provides an improved performance and fault tolerance similar to RAID 5, but with a dedicated parity disk rather than rotated parity stripes. The single parity disk is a bottle-neck for writing since every write requires updating the parity data. One minor benefit is the dedicated parity disk allows the parity drive to fail and operation will continue without parity or performance penalty.
R4 - Block level parity.
Identical to RAID 3, but does block-level striping instead of byte-level striping. In this setup, files can be distributed between multiple disks. Each disk operates independently which allows I/O requests to be performed in parallel, though data transfer speeds can suffer due to the type of parity. The error detection is achieved through dedicated parity and is stored in a separate, single disk unit.
R5 - Striped set with distributed parity.
Distributed parity requires all drives but one to be present to operate; drive failure requires replacement, but the array is not destroyed by a single drive failure. Upon drive failure, any subsequent reads can be calculated from the distributed parity such that the drive failure is masked from the end user. The array will have data loss in the event of a second drive failure and is vulnerable until the data that was on the failed drive is rebuilt onto a replacement drive.
R6 - Striped set with dual distributed Parity.
Provides fault tolerance from two drive failures; array continues to operate with up to two failed drives. This makes larger RAID groups more practical, especially for high availability systems. This becomes increasingly important because large-capacity drives lengthen the time needed to recover from the failure of a single drive. Single parity RAID levels are vulnerable to data loss until the failed drive is rebuilt: the larger the drive, the longer the rebuild will take. Dual parity gives time to rebuild the array without the data being at risk if one drive, but no more, fails before the rebuild is complete.
 

What’s the need for separate network for storage why LAN cannot be used?

What’s the need for separate network for storage why LAN cannot be used?
LAN hardware and operating systems are geared to user traffic, and LANs are tuned for a fast user response to messaging requests.
With a SAN, the storage units can be secured separately from the servers and totally apart from the user network enhancing storage access in data blocks (bulk data transfers), advantageous for server-less backups.

Name some of the SAN topologies

Name some of the SAN topologies
Point-to-point, arbitrated loop, and switched fabric topologies

WHEN SHOULD I DEPLOY FIBRE CHANNEL INSTEAD OF ISCSI?

WHEN SHOULD I DEPLOY FIBRE CHANNEL INSTEAD OF ISCSI?
For environments consisting of high-end servers that require high bandwidth or data center environments with business-critical data, Fibre Channel is a better fit than iSCSI. For environments consisting of many midrange or low-end servers, an IP SAN solution often delivers the most appropriate price/performance.

HOW IS FIBRE CHANNEL DIFFERENT FROM ISCSI?

HOW IS FIBRE CHANNEL DIFFERENT FROM ISCSI?
Fibre Channel and iSCSI each have a distinct place in the IT infrastructure as SAN alternatives to DAS. Fibre Channel generally provides high performance and high availability for business-critical applications, usually in the corporate data center. In contrast, iSCSI is generally used to provide SANs for business applications in smaller regional or departmental data centers.

WHAT ARE THE BENEFITS OF 4GB FIBRE CHANNEL?

WHAT ARE THE BENEFITS OF 4GB FIBRE CHANNEL?
Benefits include twice the performance with little or no price increase, investment protection with backward compatibility to 2 GB, higher reliability due to fewer SAN components (switch and HBA ports) required, and the ability to replicate, back up, and restore data more quickly. 4 GB Fibre Channel systems are ideally suited for applications that need to quickly transfer large amounts of data such as remote replication across a SAN, streaming video on demand, modeling and rendering, and large databases. 4 GB technology is shipping today.

WHAT IS THE FUTURE OF FIBRE CHANNEL SANS?

WHAT IS THE FUTURE OF FIBRE CHANNEL SANS?
Fibre Channel is a well-established, widely deployed technology with a proven track record and a very large installed base, particularly in high-performance, business-critical data center environments. Fibre Channel SANs continue to grow and will be enhanced for a long time to come. The reduced costs of Fibre Channel components, the availability of SAN kits, and the next generation of Fibre Channel (4 GB) are helping to fuel that growth. In addition, the Fibre Channel roadmap includes plans to double performance every three years